
Obsessively
Thorough

Software Design

A Guide to InterfaceDrivenArchitecture

Hal Helms and Clark Valberg

Obsessively
Thorough

Software Design

Chapter 1

07 | When Bad Things Happen to Good Projects

Chapter 2

 15 | So, Now What?

Chapter 3

25 | Interface-Driven Architecture Project Plan

Chapter 4

45 | Five Red Flags - Warning Signs of a Project At Risk

Chapter 5

49 | Consultant Surveys

Contents

When Bad
Things

Happen to
Good Projects

C h a p t e r 1

8 | Obsessively Thorough Software Design

We might as well get the bad news out right away. In a widely-cited report,
The Standish Group disclosed the results of a thorough study on custom
software applications—including websites and Web applications.

Aptly named, “The CHAOS Report” revealed that, in 2004, custom soft-
ware projects were delivered on time and on budget only 29% of the time.
Outright project failures accounted for 18% of all attempted projects. The
remaining 53% were charitably deemed “challenged”—with cost overruns
averaging 43% more than the budgeted amount and with time overruns up
to 180% greater than time originally allocated.

This Software Project Survival Guide was written to help you avoid the
common fate of so many software projects by helping you understand the
recurring causes for such failure.

An Onset of Can-Do Flu
It’s not that software developers want to fail: we’re as frustrated as anyone
when yet another project falls into the “challenged” category or, worse, be-
comes an outright failure. So why does it keep happening?

Consider how software project contracts are granted. In the typical scenario,
several software development firms will be asked to offer a bid on a project.
Working with a little information—a Request for Proposal, perhaps, or
simply from an interview with the client,—the development firm is asked to
commit themselves to a firm, fixed bid for the entire project.

At exactly the point where  the software firm knows almost nothing about
what customer requirements will truly be, they are asked for a fixed price. At
exactly the point where the risk is maximal, the development firm is asked
to commit to a set price and a firm date.

It might seem that the developers would logically seek to mitigate their risk
by charging as much as possible and promising as little as possible. But de-
velopers are prone to a work-related illness: the Can-Do Flu. Symptoms of the
disease are a willingness to accept any challenges and make any promises in
order to get the job.

Obsessively Thorough Software Design | 9

We Have Another Term for it…
Knowing that they will be competing for your business against other
developers similarly afflicted, they will happily provide you with a bid that in-
cludes a fixed price and a firm delivery date. In the industry, we refer to these
as “back-of-the-envelope bids.” And, unfortunately, they’re usually worth the
paper that envelope is constructed from.

Now, developers aren’t really quite that foolish. They know that once they
have the job, they have a truly effective risk-mitigation strategy: the Change
Order. Since they don’t know enough to provide a fully specified bid, the
language of the proposal is necessarily vague. When, during the course of
building the software, they discover something they did not anticipate, the
change order provides convenient cover.

The Case of the Disappearing
Developer
In our scenario, one of the firms is granted the project. Now, something curi-
ous happens: after a few initial meetings, the developer disappears! No more
meetings, only occasional phone calls and possibly a few emails. You are not
overly concerned—you’ve discussed the requirements with the developer.
They may have interviewed some of the people who will use the software.

Custom software
projects were delivered
on time and on budget
only 29% of the time.

10 | Obsessively Thorough Software Design

Obsessively Thorough Software Design | 11

Now they have to go produce the code.

What you don’t know—and what the developer likely has no idea of—is that

the success or failure of your project is already determined before a single

line of code is written. The root cause of failure is ignorance.

A piece of software that both meets your current needs and has the flex-

ibility to adapt easily to new ones is based on a scale model of your busi-

ness. It needs to reflect both the formal knowledge of your business and the

techniques and policies that make your business uniquely yours—a sort of

“tribal knowledge.”

This kind of information—vital to the success of your project—cannot be

gleaned from a few meetings and the occasional phone call. The user re-

quirements the developer has uncovered are but the tip of the iceberg. What

lies hidden beneath are the real needs of your business. Given this, is it any

wonder that only 29% of custom software succeeds?

Project Timewarp
While the developers are hard at work on your project, time advances. At

some point, you’ll start making inquiries about the state of the project. It’s

a running joke within the industry that at any point when a developer is

asked, “How far along are you?”, s/he will answer: 90%. Indeed: the first

90% of the job only took six weeks; it’s the final 10% that can run into

many more months.

There’s a good reason for this project timewarp: the first 90% of the job was

the easy part. It’s the “techie” part developers enjoy—designing databases,

writing software modules, and so forth. All of this would be fine, if the de-

velopers were the ultimate judges of the project’s success. But, they’re not.

Users are. And so history repeats itself: developers spend their time and your

money making software that users will not use.

12 | Obsessively Thorough Software Design

With each new day come new questions developers must face about how

your software should function. But removed from the process are the only

people who can and should answer these decisions: users. And without

these users, developer must make guesses about how your business works

and how the software should behave.

These are the dog days of the project, where developers are caught in the

quagmire of absent user requirements. Long gone are the halcyon days

where lofty promises were made. We’ve entered the phase of the project

known as “The Death March.” The goal now is to deliver something—and

get on with the next project that’s already behind schedule.

“Anyway”, the developers say to themselves, “the client is bugging us to

deliver the software and, besides, this project was underbid. What can they

expect?” A jibe all developers know is that a project will run out of time

and money long before it runs out of excuses.

A project will run
out of time and
money long before it
runs out of excuses

Obsessively Thorough Software Design | 13

Ta-Da Time!
It’s time to deliver the software. After many weeks of patient waiting, the

users will get a chance to see the software designed to make them more

productive and even open new opportunities for the business.

A meeting to demonstrate the new software is held. There’s palpable

excitement as the first screen is displayed. Then the next screen. And the

next. The developer races through the features of the software, ignoring

the blank looks of the users.

“Is this what we’re actually going to use?” a bold user may inquire. Another

may venture a suggestion: “You know what would be nice…” And now, for

the first time in the project, the developer gets real user requirements—

when there’s neither time nor money to make the software work.

Now, things aren’t always this bleak, of course. Sometimes, the develop-

ers get it just right. Actually, that happens 29% of the time. The problem

is that we’ve involved real users exactly twice in the process— at the

beginning of the project, when it was too early for them to give us any

meaningful feedback, and  at the end—when it’s too late to make use of

that feedback.

We said earlier that the success or failure of a project was determined

before the first line of code is written. Why? Because the die was cast when

the developers proceeded before the true requirements were known. This

is, far and away, the greatest single cause for software project failure.

In fact, Dr. Ralph Young, of Northrup Grumman Information Technology

Division, estimates that 85% of defects in developed software originate in

failed requirements.

14 | Obsessively Thorough Software Design

Time for Some Good News?
The good news is that the causes of software project failure are well
known—and avoidable. The rest of this Survival Guide explains how you
can make sure your project is in that elite 29% of successes.

Beating the Odds: Conducting
Successful Software Projects
While it’s true that over 70% of software projects involve some significant

degree of failure, that number is not spread evenly across all software

production methodologies. In the last several years, a new and highly suc-

cessful approach to software project management has emerged under the

banner of “agile software practices.”

So, Now
 What?

C h a p t e r 2

16 | Obsessively Thorough Software Design

A picture is worth a
thousand words. An
interface is worth a
thousand pictures.
Ben Shneiderman,
Computer Scientist

The Problem with Programmers
Traditional Software Engineering places great emphasis on writing code

that machines can run without ambiguity. The history of successful tech-

nologies can be traced as a move from technology-centric to user-centric.

This has been true of televisions, cameras, and cars. As the technology

improves, more time and effort are available to improve the user experi-

ence. This should also be true of software projects.

What we might call “the programmer mindset” could be characterized in

this statement: the code is the application. Users, on the other hand take

Obsessively Thorough Software Design | 17

a very different view: to them, the interface is the application.

The problem with the programmer mindset is that, while it produces

high-quality code, it too often produces programs that users find unus-

able. It’s as if an auto-maker produced a car that required three arms to

drive. The car might be a technological tour-de-force, but the audience

that would find such a car usable would be...limited.

Interface-Driven Architecture
Forty years of Software Engineering experience indicate that it’s much

cheaper to change a product early in the development process than it is to

make changes later in the process. The most common estimate is that it’s

100 times cheaper to make a change before any code is written than it is to

wait until the implementation is complete. —Jakob Nielsen, Usability Expert

The technology for creating software is orders of magnitude better than

it was 40 years, ago but our Software Engineering methodologies don’t

reflect this. Software engineers use the derisive term, “lipstick”, to refer

to the user experience (the user interface). It is still the last thing to be

considered and is often relegated to the most junior of developers.

Traditional development methods spend a small amount of time creat-

ing project requirements. Then, code work is begun. After the bulk of

time and money is devoted to code, the “lipstick” is applied and the ap-

plication is delivered.

Perhaps the biggest change that agile methodologies have given us

is a new understanding of the power that comes from creating the

user interface first. Interface-Driven Architecture (IDA), as this practice

is known, offers a process that lets a variety of project stakeholders

(including developers) discover what the real needs of the project are—

before any code is written.

18 | Obsessively Thorough Software Design

What makes IDA projects so successful is that non-interface issues are

resolved during the interface process.  Features, usability, understanding

the business processes—all these are discoverable through the interface

process. There is no expectation that the first user interface attempt will

be perfect. Instead, iteration is built into the IDA process. But since no

code is involved, the cost of each iteration is very small. When interfaces

are used this way, rather than as something “pasted” onto the underly-

ing code, the chances for a successful software deployment soar.

Design is not just
what it looks like and
feels like. Design is
how it works.
Steve Jobs, Apple CEO

Obsessively Thorough Software Design | 19

Different Stakeholders,
Different Needs
Successful software must work on multiple levels. Each stakeholder in the
project has different needs, and good software addresses them all:

By using the Interface-Driven Architecture approach, each stakeholder is
able to see what the finished application will look like. Their valid concerns,
feedback, and suggestions can be incorporated before the expense of coding
the application is undertaken.

 Administrators
are concerned that the software have the features needed
to help them do their existing jobs.

 Managers

want the software to provide increased user productivity
and to offer the business new opportunities—either to
generate new revenues or to save on expenses.

 End users

if they are not to be frustrated, want the software to score
high in usability.

 Funders or investors

prefer working software over Powerpoint presentations
and need realistic costs in order to make a decision about
their return on investment.

 Business consultants
wish to be provide business advice that will influence the way
the software works.

20 | Obsessively Thorough Software Design

 Rethinking the Fixed Bid
All software production firms are accustomed to their clients’ understand-
able desire for a fixed bid on a project. The problem is that so little is truly
understood about the final project requirements at the time the bid must be
placed that the fixed bid is necessarily little more than a “guesstimate”. This
no-win situation forces developers to adopt the goals of:

(A) getting the job and

(B) using change orders to bring the bid into alignment with the scope of
actual work.

Interface-Driven Architecture practitioners find the adversarial nature of this
relationship with clients unacceptable. Instead, they  work with the differ-
ent stakeholders to create the user interface first. The process of creating the
interface is highly iterative, involving multiple versions of the interface. A
new version of the interface is produced when any of the following triggers
is encountered:

1. client feedback

2. discovery of new project requirements

3. negative usability test results conducted with real target users

The best time to give
a fixed bid on the
software is at the end
of the interface process.

Obsessively Thorough Software Design | 21

How many versions are produced? As
many as it takes to get things right.
The problem with all this is pricing. The best time to give a fixed bid on
the software is at the end of the interface process, since each new version
further defines exactly what the software development firm must deliver.
Because so much more is known about the real goals and requirements of
the software after the interface is complete, there is very little risk of chang-
ing requirements, allowing the developer to bid on a highly-specified project,
eliminating the change orders that are the bane of software projects.

A firm using IDA
can provide a good
estimate of the cost.

22 | Obsessively Thorough Software Design

The greatest reason for
failed software projects
is that the software
delivered does not do
what users need.

Two Are Better Than One
IDA solves the pricing problem by breaking the project pricing into two dis-
tinct phases, each with their own separate steps:

Phase I: Architecture

1. Analysis
2. Interface Design
3. Usability Testing

Phase II: Fabrication

4. Software Engineering

5. Coding

6. BETA Testing

7. Deployment

*. Monitoring

 

Obsessively Thorough Software Design | 23

A fixed bid is prepared for Phase I: Architecture. Because none of these steps
involve the time and expense of code, clients can work through the complete
discovery and specification of the project (through the interface) at relatively
low cost.

While going through interface iterations, a firm using IDA can provide a
good estimate of the cost (in both time and money) of fabricating the
software for each iteration. This allows organizations to keep to a budget
without needing to share that budget with the developer. This eliminates
the “all or nothing” aspect of fixed bids for the entire project.

After all project stakeholders agree that the user interface is complete,
another fixed bid is issued for the Phase II: Fabrication of the architected
application in code.

This two-phased approach provides several options to the client. They may,
of course, continue with the original development firm, contracting with
them for fabrication of the architecture..

They may also put the fabrication out for bid. Since any firm asked to provide
a bid has highly detailed information, they can apply their “sharpest pencil”
to the bid. In practice, we find that the combined cost of both phases to be
considerably less (15-20% on average) than a single bid given at the point of
minimal information—the traditional method.

Finally, the client may elect to take coding in-house. This often makes sense
for large organizations that have internal programming resources. We’ve
seen that, while programmers are very good at solving technical problems,
they usually have neither the training nor the interest in solving the require-
ments and usability issues that are key to a successful software project.
Providing them with a fully-scoped and detailed specification for the project
often provides an ideal solution.

24 | Obsessively Thorough Software Design

Questions?
Clients new to Interface-Driven Architecture often have many questions: Will
I really save money? Will this process protect me from the high failure rate of
traditional software projects? How will this process work with our existing
processes?

Throughout the rest of this Software Project Survival Guide, we will explore
the objectives and deliverables of each step in an IDA project. If you’d like to
discuss further whether IDA makes sense for your software project, please
contact us:

Quick Summary

Interface-Driven Architecture (IDA) is a two-phase process that uses
the user interface to discover and fully specify a software project.

IDA produces far better results than traditional software
development approaches

Steps in the IDA process:

Interface-
Driven

Architecture
Project Plan

C h a p t e r 3

26 | Obsessively Thorough Software Design

Phase I: Architecture
1. Analysis
2. Interface Design
3. Usability Testing

Phase II: Fabrication
4. Software Engineering

5. Coding

6. BETA Testing

7. Deployment

*. Monitoring

The client receives two fixed bids

1. an Architecture bid, presented at the beginning of the project

2. a Fabrication bid, presented after the architecture is complete

• The combined cost of both bids is usually 15-20% less than a single bid 	
 based on traditional practice. More importantly, the finished product 		
 more accurately reflects the needs of the organization.

Obsessively Thorough Software Design | 27

2

5

7

4

3

6

1

28 | Obsessively Thorough Software Design

The quality of your finished application depends in large part on the depth
of understanding the software development shop has of your business
needs. During Analysis, we will often ask to interview those involved in the
day-to-day work that the project is concerned with in order to understand
your business processes. This provides us with a ground-level view of the
software requirements so that the way your company works is reflected
in the software we create. During this phase, we will identify various user
profiles (often with different needs and goals for the software) and create
a shared vocabulary that identifies the various users, deliverables, and pro-
cesses the software must account for.

Objectives

1. Analysis
Phase I: Architecture

Deliverables
Project Analysis Report

Review existing business process and infrastructure

Identify organization/brand position

Align goals of the client and the software development firm

Identify user profiles

Create use cases

Develop relational semantic (shared vocabulary)

Research supporting technologies

Obsessively Thorough Software Design | 29

Analysis

Interface Design

Usability Testing

14%

Software Engineering

Coding

Beta Testing

Launch

ARCHITECTURE

FABRICATION

30 | Obsessively Thorough Software Design

Objectives

Deliverables

Phase I: Architecture
2. Interface Design
Once Analysis is complete, we begin a process of designing how users will
interact with the software. This is far more than look-and-feel this process
provides users with a functioning model of the software. Interface Design is
the heart of Interface-Driven Architecture (IDA).  Interface Design  is a highly
iterative process that asks users for feedback, provides a new iteration of the
interface, and asks users again for feedback. This process continues until (a)
users tell us that what we’ve shown them is accurate and complete, and (b)
we are assured that we know everything we need to proceed.

Typical development methodologies keep the user interface hidden from the
user until delivery—when it’s too late to make necessary changes. The great-
est reason (by far) for failed software projects is that the software delivered
does not do what users need. By creating the user interface first in conjunc-
tion with actual users, we drive out the risk of project failure.

Completed User Interface software

Define site/application structure

Create site/application design

Design user interaction

Obsessively Thorough Software Design | 31

Analysis

Interface Design

Usability Testing

28%

Software Engineering

Coding

Beta Testing

Launch

ARCHITECTURE

FABRICATION

32 | Obsessively Thorough Software Design

Phase I: Architecture
3. Usability Testing
Usability Testing begins in the late part of the Interface Design step. Working
with focus groups comprised of actual target users, we use special software
designed for testing the users’ ability to easily and successfully use the sys-
tem. One source of project failure is user rejection—the software is just too
hard or too frustrating to use. With methodical usability testing, we discover
in advance any sources of difficulty or frustration and make any adjustments
necessary. While usability testing is routine on commercial off-the-shelf
software, it is an unfortunate rarity in the custom software development
process. A software vendor not doing usability testing should be prepared to
explain what they know that companies such as Apple, Google, and Micro-
soft (all of whom do extensive usability testing) do not.

Objectives

Deliverables

Assemble virtual focus groups

Test use cases

Software Usability Report

Obsessively Thorough Software Design | 33

Analysis

Interface Design

Usability Testing

42%

Software Engineering

Coding

Beta Testing

Launch

ARCHITECTURE

FABRICATION

34 | Obsessively Thorough Software Design

Now, it’s time to turn the architectural plan into a fabrication plan. Only
a foolish person would begin building a house without a blueprint; in the
same way, only a foolish software shop will begin coding a project without
modeling the components that will provide working code. The component
model provides the foundations on which code will be written. It encom-
passes software best practices (known as design patterns) expressed in
UML diagrams, and a solid relational database schema. It is, in large part, the
component model of your project that will determine how robust, scalable,
and maintainable the code will be.

Phase II: Fabrication
4. Software Engineering

UML class model diagram

Entity/Relationship diagram

Objectives

Deliverables

Create domain model

Create data schema

Create API (Application Programming Interface)

Create user documentation/help system

Obsessively Thorough Software Design | 35

Analysis

Interface Design

Usability Testing

66%

Software Engineering

Coding

Beta Testing

Launch

ARCHITECTURE

FABRICATION

36 | Obsessively Thorough Software Design

Phase II: Fabrication
5. Coding
Interface-Driven Architecture makes back-end coding far easier, faster, and
less expensive, since (unlike traditional development methodologies) all
the business rules and system requirements have been firmly established.
While some shops may specialize in a particular programming language,
the language and database should be chosen to best fit the type of project
you envision. Further, all code should be fully tested to ensure that deployed
software will be free of dangerous “bugs”.

Objectives

Deliverables

Develop system component 
Perform unit testing
Perform coverage testing
Perform load testing

Beta version of application deployed to staging server

Obsessively Thorough Software Design | 37

Analysis

Interface Design

Usability Testing

80%

Software Engineering

Coding

Beta Testing

Launch

ARCHITECTURE

FABRICATION

38 | Obsessively Thorough Software Design

Phase II: Fabrication
6. Beta Testing
During the coding phase, developers do their best to build robust code.
During the Beta Testing phase, dedicated testers do their best to break that
code. In too many development shops, beta testing is left as an exercise for
the user. But, just as editors help writers produce the best possible product,
testers work with coders to ensure that annoying and possibly costly bugs
are discovered and “squashed” before the software is launched. At the end of
the Beta Testing phase, acceptance testing should be performed. An accep-
tance test is a formal review in which you agree that the system has been
fully and accurately implemented.

Objectives

Deliverables

Test all use cases

Conduct acceptance testing

Deployment-Ready Software

Obsessively Thorough Software Design | 39

Analysis

Interface Design

Usability Testing

94%

Software Engineering

Coding

Beta Testing

Launch

ARCHITECTURE

FABRICATION

40 | Obsessively Thorough Software Design

Phase II: Fabrication
7. Deployment
When the proceeding phases have been conducted properly, the launch of
your project should be  a straight-forward process. The Deployment phase
simply deploys the fully tested and accepted software into a live environment.

Objectives

Deliverables

Prepare server environment

Deploy code to production server

 Archival DVD with production code and supporting documentation

Obsessively Thorough Software Design | 41

Analysis

Interface Design

Usability Testing

100%

Software Engineering

Coding

Beta Testing

Launch

ARCHITECTURE

FABRICATION

42 | Obsessively Thorough Software Design

Phase II: Fabrication
*. Monitoring
Once your project is deployed, Monitoring regularly checks system perfor-
mance to provide metrics on usage and load. A monthly report is provided
with any steps needed to ensure the ongoing health of your project.

Objectives

Deliverables

Ensure stability and continuing performance of system

Report on usage and system load

Monthly System Health Report

Obsessively Thorough Software Design | 43

Five Red
Flags—

Warning
Signs of a
Project At

Risk

C h a p t e r 4

46 | Obsessively Thorough Software Design

Due Diligence Checklist

Here are a few things you’ll want to keep in mind when meeting with your
next software vendor.

1. Am I meeting with technology experts or just salespeople?

A salesperson might be just fine for purchasing home appliances or vinyl siding,
but the complexity of a software project calls for an expert’s perspective.

Any company serious about your project’s success will have a technology
specialist accompany any “sales” people you might meet with.  The best com-
panies will send along a technology architect to ensure that things start off on
the right foot.  Studies have shown that the most common reason software
projects fail is that the software built simply does not fit the needs of the client
and their users. Experienced development firms understand the risks of the
client/programmer disconnect and promote solid lines of communication early.

 Make sure you’re meeting with a seasoned technology expert capable of
providing project guidance.                     

2. Am I being asked the right questions?

If the right questions aren’t answered, a project can be derailed before it gets
started.

Serious problems can occur when a software company glosses over important
project details during the pre-proposal interview.  It’s important that develop-
ers ask as many questions as possible to form a clear picture of how and why
the project at hand will add value to your organization.  Experienced develop-
ment firms will ask questions centered on your business model, company
background, current technology infrastructure, work-flow, business processes,
previous technology experiences, etc.  One sign that you’re not dealing with a
technology architect is that the sales person will ask few probing questions.
Asking questions early will ensure that the mission is clear and the goals well-
defined. 

 Make sure the consultant is asking enough questions to understand your
business needs.

Obsessively Thorough Software Design | 47

3. Am I being presented with a comprehensive project plan?

Without a proven methodology driving your project, there’s just no telling where
you’ll end up.

An experienced development firm presents a comprehensive project plan or
methodology before offering a proposal. These plans usually include a set of
steps or phases intended to guide your project from start to finish and ensure
a positive result.  Many projects fail due to lack of planning, which can result in
costly timeline and budgetary overages.

 Make sure the consultant is fully educating you on their methodology and
plan for success.

4. Will I receive a fixed bid before important questions are answered?

“Back of the envelope bids”, as they are known, only lead to broken timelines and
change orders.

This single issue is responsible for more project failure than any other.  The
practice of providing a fixed cost bid before those responsible for develop-
ing the project have fully realized its requirements can seriously threaten a
project’s success.  Until every last detail of the software’s form and function
has been established and reviewed by the developers, project stakeholders, and
most importantly, the eventual users of the product, any calculations as to the
price or timeline of a project is little more than guess-work.

 Make sure the consultant isn’t pricing your project with a “back of the
envelope bid”.

5. Am I being advised on specific project risks?

When it comes to managing business risk, leaps of faith are usually made off a
cliff.

The truth: 71% of all software projects fail!  Any company that doesn’t address
the problems of software failure head-on is asking for trouble.  Each project

represents a unique set of challenges that must be addressed and planned for. 

 Experienced firms understand the risk involved with software develop-

ment and use best practices, methodology, and clear client communication

to beat the odds.

Consultant
Surveys

C h a p t e r 5

50 | Obsessively Thorough Software Design

Use this short survey to rate your experience with our firm.

You may also choose to re-use this form to gauge your experience with the
other consultants you’ll be meeting with.

   The consultant asked detailed questions about my business model and
processes.

 2. The consultant asked detailed questions about my project’s mission.

 The consultant educated me on his/her development process and meth-
odology.

 The consultant offered valuable ideas and feedback on my project.

 The consultant identified the specific risks and challenges involved with
my project and discussed how they would be addressed.

 The consultant related past experience working with projects similar to
my own.

 The consultant listened to my needs and demonstrated understanding
of my business and goals.

Key:

A: 64-70 B: 57-63 C: 50-56 F:   0 - 49

Consultant Survey

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

1

2

3

4

5

6

7

Obsessively Thorough Software Design | 51

Your Notes

52 | Obsessively Thorough Software Design

Use this short survey to rate your experience with our firm.

You may also choose to re-use this form to gauge your experience with the
other consultants you’ll be meeting with.

   The consultant asked detailed questions about my business model and
processes.

 2. The consultant asked detailed questions about my project’s mission.

 The consultant educated me on his/her development process and meth-
odology.

 The consultant offered valuable ideas and feedback on my project.

 The consultant identified the specific risks and challenges involved with
my project and discussed how they would be addressed.

 The consultant related past experience working with projects similar to
my own.

 The consultant listened to my needs and demonstrated understanding
of my business and goals.

Key:

A: 64-70 B: 57-63 C: 50-56 F:   0 - 49

Consultant Survey

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

1

2

3

4

5

6

7

Obsessively Thorough Software Design | 53

Your Notes

54 | Obsessively Thorough Software Design

Use this short survey to rate your experience with our firm.

You may also choose to re-use this form to gauge your experience with the
other consultants you’ll be meeting with.

   The consultant asked detailed questions about my business model and
processes.

 2. The consultant asked detailed questions about my project’s mission.

 The consultant educated me on his/her development process and meth-
odology.

 The consultant offered valuable ideas and feedback on my project.

 The consultant identified the specific risks and challenges involved with
my project and discussed how they would be addressed.

 The consultant related past experience working with projects similar to
my own.

 The consultant listened to my needs and demonstrated understanding
of my business and goals.

Key:

A: 64-70 B: 57-63 C: 50-56 F:   0 - 49

Consultant Survey

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

1

2

3

4

5

6

7

Obsessively Thorough Software Design | 55

Your Notes

56 | Obsessively Thorough Software Design

Use this short survey to rate your experience with our firm.

You may also choose to re-use this form to gauge your experience with the
other consultants you’ll be meeting with.

   The consultant asked detailed questions about my business model and
processes.

 2. The consultant asked detailed questions about my project’s mission.

 The consultant educated me on his/her development process and meth-
odology.

 The consultant offered valuable ideas and feedback on my project.

 The consultant identified the specific risks and challenges involved with
my project and discussed how they would be addressed.

 The consultant related past experience working with projects similar to
my own.

 The consultant listened to my needs and demonstrated understanding
of my business and goals.

Key:

A: 64-70 B: 57-63 C: 50-56 F:   0 - 49

Consultant Survey

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

8 104 62 7 93 51

1

2

3

4

5

6

7

Obsessively Thorough Software Design | 57

Your Notes

Copyright© 2007
Hal Helms and Clark Valberg

